Prominence over boundary in prefix stress resistance | RFP2022 Abstract Noah Elkins | University of California, Los Angeles, USA | noahelkins1@g.ucla.edu

In this paper, I present evidence of a novel stress asymmetry based on crosslinguistic data from 138 languages: prefixes almost never shift stress leftward if a language's default stress is initial, whereas peninitial stress languages willingly incorporate prefixes into their stress assignment domains. Of all the prefixing languages surveyed with reliable data, all peninitial stress languages (7/7) incorporate prefixes, and all but one initial stress languages (30/31) do not. Two characteristic examples are given below (primary-stressed syllables boldfaced):

- (1) Prefix stress resistance in initial Tenango Otomi (Blight & Pike 1976)
 - a. 'thèbe 'beads' b. 'zàfànĩ 'cornstalk mầ-zí-'thèbe 'my little beads' ra-'zàfànĩ 'DET-cornstalk'
- (2) Prefix stress incorporation in peninitial Osage (Quintero 2004)
 - a. ðaah tã 'drink' b. ða waa 'count' ã- wa-ðaah tã 'we drink' wa- ðawaa 'count sth.'

Two potential analyses of prefix stress resistance in initial stress systems are entertained. First is STRESS-R σ_1 , which simply requires root-initial syllables to be stressed. This constraint is undominated in initial stress languages (3). In cases including secondary stress, we can also postulate a constraint in which root stress is always primary. In peninitial-stress languages on the other hand, STRESS-R σ_1 is outranked by foot structure constraints, leading to prefixes' incorporation into the stress assignment domain (4).

(3) /thèbe/ STRESS-Ro1 ALL-FT-LEFT TROCHEE Parse-σ r a. ('thèbe) * b. (thè'be) *! /ma-zí-thèbe/ STRESS-Ro1 TROCHEE ALL-FT-LEFT Parse-σ ** a. mã-zí-('thèbe) *! b. ('må-zí)-thèbe ** * ** c. mã-(zí-'thè)be *|

(4)	/ðaahtã/	Іамв	ALL-FT-LEFT	STRESS-Rσ ₁	Parse-σ
	r a. (ðaahˈtã)			*	
	b. ('ðaahtã)	*!			
	/ãk-ˈwa-ðaahtã/	Іамв	ALL-FT-LEFT	STRESS-Rσ ₁	Parse-σ
	a. (ã-ˈwa)-(ðaahˌtã)			*	
	b. ã-(wa-'ðaah)tã		*!		**
	c. ã-wa-(ˈðaahtã)	*!	**		**

The second possibility, which I reject, utilizes ALIGN-L(Root, PrWd) to interpose a prosodic boundary between the root and any prefixes. This constraint prefers the root to initiate a new prosodic word, which would then be the domain of footing. This account fails to explain the difference between initial- and peninitial-stress languages, as the ALIGN constraint is not sensitive to foot type:

(5)	/mä̃-zí-thèbe/	ALIGN-L(Root, PrWd)	TROCHEE	Parse-σ
	r a. mȧ̀-zí-[(ˈthèbe)]ω			
	b. [(ˈmä̀-zí)-thèbe] _ω	*!		**
	/ãk-wa-ðaahtã/	ALIGN-L(Root, PrWd)	IAMB	Parse-σ
	🍑 a. ã-wa-[(ðaahˈtã)]ω			
	⊗ b. [(ã-ˈwa)-ðaahtã] _ω	*!		**

The need to analyze this stress asymmetry as root-initial prominence maintenance shows a novel instance of root-initial syllables resisting phonological alternation (e.g. Becker et al. 2012). It is likely that this resistance is due to the high degree of psycholinguistic salience carried by root-initial position but not necessarily by word-initial positions, due to root-initial material being highly relevant to lexical access (Gaskel & Marslen-Wilson 2002). As such, we can offer a likely functional explanation for root-initial stress maintenance in initial stress languages: $STRESS-R\sigma_1$ is highly ranked for these languages due to its psycholinguistic grounding – shifting stress, which itself is an important cue for lexical access, leftward under prefixation would blur the highly salient root-initial percept. (The sole apparent counter-typological case, Bardi (Nyulnyulan; Bowern 2012), does give initial stress to prefixes: however the root-initial syllable must also bear at least secondary stress, even if it induces clash, indicating that $STRESS-R\sigma_1$ is still undominated in this language.) Conversely, constraints that aim to maintain stress in medial/final positions either do not exist or are ranked lower in a stringency hierarchy (de Lacy 2004).

To assess the validity of this assumption, I undertook two companion crosslinguistic surveys of ultimate-stress languages and penultimate-stress languages to see if they include suffixes into stress assignment domains at statistically higher rates than initial stress languages. Of the over 200 languages in these surveys, around 90% of them with reliable sources were found to incorporate suffixes, indicating that root-final positions are nowhere near as resistant to alternation as root-initial position, thus confirming the hypothesis.

References

Becker, M., A. Nevins & J. Levine (2012). Asymmetries in generalizing to and from initial syllables. *Language* 88(2), 231-268.

Blight, R. & E. Pike (1976). The phonology of Tenango Otomi. IJAL 42(1), 51-57.

Bowern, C. (2012). A Grammar of Bardi. de Gruyter.

Gaskell, G. & W. Marslen-Wilson (2002). Representations and competition in the perception of spoken words. *Cognitive Psychology* 45(2), 220-255.

de Lacy, P. (2004). Markedness conflation in Optimality Theory. *Phonology* 21(2), 145-199. Quintero, C. (2004). *Osage Grammar*. Lincoln: University of Nebraska Press.